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  Abstract 

 
 In the competitive and dynamic world of financial technology (fintech), high 

performance and low latency are crucial for real-time transactions and data 

processing. Microservices architecture, combined with efficient caching 

mechanisms, significantly enhances scalability and responsiveness. VMware 

GemFire, an in-memory data grid, provides robust caching solutions that, 

when paired with Java 17’s Z Garbage Collector (ZGC) and heap Least 

Recently Used (LRU) eviction strategies, can maximize cache performance. 

This paper proposes a system integrating GemFire with ZGC to optimize 

memory management, reduce latency, and maintain high throughput. The 

heap LRU eviction strategy ensures that the least recently used data is 

evicted first when memory limits are reached, maintaining high cache hit 

rates and reducing the risk of the JVM running out of memory. By adjusting 

ZGC and using heap LRU eviction, this combined method makes it easier for 

microservices to handle changing workloads, grow horizontally, and speed 

up data access, which improves the overall performance and reliability of the 

system. Different settings for SoftMaxHeapSize have different effects on 

heap usage, operation throughput, and garbage collection performance. The 

results of the experiments show how to tune GemFire cache performance to 

work best in a microservices environment. 

Keywords: 

GemFire; 

Microservices 

Architecture; 

Caching Strategies; 

Fintech; 

 

 

Author correspondence: 

Sumit Bhatnagar 

Vice President of Software Engineering, New Jersey, USA 

Sumit.bhatnagar@outlook.com 

Roshan Mahant 

Senior Software Consultant, Texas, USA 

roshanmahant@gmail.com 

 

 

1. Introduction 

In the ever-evolving landscape of financial technology (fintech), where speed, 

reliability, and scalability are paramount, the performance of applications is critical. 

Fintech solutions often deal with real-time financial transactions, complex data analytics, 

and user interactions that demand instantaneous responses. The microservices architecture 

has become the cornerstone of modern fintech applications due to its ability to decompose 

large systems into smaller, manageable, and independently deployable services.  

However, this architectural approach, while providing flexibility and scalability, 

also introduces new challenges, particularly in maintaining high performance across 
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distributed systems. To address these challenges, effective caching strategies are essential. 

Caching reduces the latency of data retrieval operations by storing frequently accessed data 

closer to the application, thus minimizing access times and reducing load on backend 

systems. One of the leading technologies in this domain is GemFire, an in-memory data 

grid that provides powerful caching capabilities.  

Fintech applications, with their demanding requirements, find GemFire ideal due to 

its high scalability and low latency design. GemFire's architecture supports a variety of 

caching strategies, such as read-through and write-through caching, write-behind caching, 

near caching, and distributed caching, each serving different purposes and scenarios. Read-

through and write-through caching ensure data consistency by synchronously interacting 

with the underlying data sources, making them suitable for transaction processing. Write-

behind caching, on the other hand, decouples write operations from the immediate database 

writes, thus improving write performance by performing these operations asynchronously. 

Near caching reduces latency further by keeping a local cache close to the application 

layer, which is particularly beneficial for real-time analytics and reporting. Distributed 

caching leverages the power of horizontal scaling by partitioning data across multiple 

nodes, thereby balancing load and enhancing fault tolerance. The integration of GemFire’s 

caching strategies into fintech microservices can revolutionize application performance. 

Transactional caching, for example, can ensure reliable and consistent transaction 

processing in real-time using read-through and write-through strategies.  

Implementing near caching significantly accelerates analytics and reporting, 

enabling faster data retrieval and more responsive dashboards. Distributed caching 

efficiently manages user sessions, ensuring scalability and high availability even under 

peak loads. (Supriyanto & Ismawati, 2019). Additionally, by asynchronously managing log 

entries, write-behind caching can optimize audit logging, meeting compliance 

requirements without compromising performance. 

 

2. Theoretical Study 

These days, technology is an important part of almost everything people do. The 

rapid growth of information and communication technology has brought about significant 

changes in various areas, including the economic, social, and other domains discussed by 

Bernardus RedikaWestama Putra and EvangsMailoa. So fast (Ngafifi, 2014), microservices 

are being added to fintech apps using the Express JS 560 framework. In this era of 

technology, the financial sector is also evolving in a more practical and modern manner 

(Rahadiyan& Sari, 2019). It is critical right now to provide technological innovation and 

use it in business (Supriyanto & Ismawati, 2019).  

Businesses are starting to transform their operations through the use of technology. 

Businesses require these changes to maintain their competitiveness. We must transform the 

challenge of technology growth into an opportunity, as it offers numerous advantages 

(Darman, 2019). As technology changes quickly, new financial apps have come out that 

combine technology with financial systems. These are called financial technologies. 

FinTech, a type of digital technology, assists in resolving public money issues. Currently, 

Fintech possesses a wide range of capabilities and is experiencing rapid growth. Fintech 

can now take care of many things, like e-money, loans, fundraisers, payments, and more 

(Muhamad Rizal, Erna Maulina, 2018).  

Due to businesses transitioning to digital platforms, a plethora of websites and 

mobile apps have emerged, enabling seamless business transactions and payments, 

regardless of time or location, provided that the computers and phones remain connected. 

The scale of the application will increase as the business expands. According to Asfifah 

and Setiaji (2019), Rest API (Representational State Transfer) is a software development 
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method that follows specific guidelines for creating services. When you send or receive 

data in the form of JSON, you always use the HTTP protocol (Rajagukguk, 2018). We 

often build an application using this method. The microservice-based application we are 

currently building is one example. Using Rest provides numerous benefits. For instance, it 

becomes simpler to modify the system, enabling faster and more efficient data sharing and 

transmission.  

A web service is a piece of software that lets two different programs talk to each 

other over the internet. HTTP is the network that most web services use. Web services, 

which are public applications, also enable clients to receive or use data (Perwira & 

Santosa, 2017). Web services also provide mechanisms for inter-web service 

communication. On the web service, the URL, also known as an endpoint, contains the 

necessary data and instructions, such as "Get" and "Post." Web services enable clients to 

share data regardless of the type of database or system they utilize. These advantages have 

led to a surge in the use of computer services in recent times.  

Developers have increasingly used microservice design in the past few years, 

developers have been using microservice design more and more, which has grown along 

with software architecture . Microservices are a type of architecture that breaks up big 

systems into smaller functional parts to make them more modular (Karabey Aksakalli , 

Çelik, Can, &Teki̇nerdoğan, 2021). Microservices enable developers to quickly and easily 

create software due to their freedom. Monolithic architecture's inability to effectively 

manage system failures contributes to the emergence of microservices. This is because a 

monolithic architecture application will have only one point of failure if one service fails or 

an error happens. 

 

3. Proposed Systems  

To maximize GemFire cache performance with ZGC and heap LRU eviction in the 

context of microservices, the integration focuses on enhancing scalability, responsiveness, 

and resource efficiency. Microservices architectures benefit significantly from efficient 

caching mechanisms like GemFire's distributed caching, which stores frequently accessed 

data in memory across multiple microservices instances. By leveraging Java 17's Z 

Garbage Collector (ZGC), microservices can manage memory more effectively, 

minimizing pauses and optimizing garbage collection cycles to maintain consistent 

performance.  

The heap LRU eviction strategy further ensures that the cache maintains high hit 

rates by evicting the least recently used data when memory limits are reached, thereby 

reducing latency and enhancing overall system throughput. This integrated approach 

improves microservices' ability to handle variable workloads and scale horizontally, but it 

also enhances reliability and responsiveness by reducing database load and improving data 

access times across distributed environments. 
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Fig.1 Configuration of System 

 

Algorithm  

 

Initialize System: Configure GemFire for distributed caching. 

Set Java 17 JVM options for ZGC: 

 -Xmx H_{max} (Maximum heap size) 

 -XX:SoftMaxHeapSize S_{max}  

 Define GemFire eviction threshold (EthE_{th}Eth). 

Pre-populate Cache:  

Load initial data into the GemFire cache.  

 Ensure long-lived heap usage is approximately 

Hmax, where α is a constant, e.g., 0.4 (40%). 

Start Monitoring:  

Continuously monitor heap usage and eviction metrics. 

Eviction Headroom Calculation:  

 Calculate Eviction Headroom:  

Eviction Headroom=Eth−Smax   

Heap Usage Calculation:  

Calculate Heap Usage (Husage 

Husage=Lset+G 

 Where:  

Lset is the Live Set Size. –  

G is the amount of Garbage. 

Garbage Collection and Memory Management:  

If Husage>Smax 

Trigger ZGC garbage collection. 

Eviction Management: 
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 If Husage>Eth 

Evict least recently used (LRU) entries from the cache. 

Performance Tuning Loop:  

 Adjust Smax   and Eth based on observed performance: 

 Increase Smax if frequent evictions occur. –  

Decrease Smax if garbage collection is too frequent 

Finalize settings when optimal performance is achieved. 

 

LRU Eviction Algorithm 

Description: When the cache reaches its capacity, LRU eviction operates on the 

principle of evicting the least recently used items first. It maintains a record of usage for 

each item and removes the item that hasn’t been accessed for the longest time when space 

is needed for new items. 

Tracking Usage: A timestamp or counter identifies the last access time for each 

item in the cache. 

Let Ti represent the timestamp or counter value for item i. 

Eviction Decision: When the cache reaches its capacity and a new item j needs to be 

added: Calculate TLRU, the minimum Ti among all items currently in the cache.Evict the 

item i 

where 

Ti=TLRU. 

Example Scenario: 

Suppose the cache has capacity C and is currently holding items i1,i2,...,in} with their 

respective timestamps {Ti1,Ti2,...,Tin} 

When a new item j is requested to be added: 

If n <C < add j directly. 

If n=Cn identify I   

Where Ti=min⁡(Ti1,Ti2,...,Tin) and replace i with j. 

 

Heap LRU Eviction Works 

Heap LRU eviction is an algorithm for maintaining cache performance while 

protecting against the risk of the JVM running out of memory. In VMware GemFire, heap 

LRU eviction works like this: GemFire continually monitors heap usage. When heap usage 

exceeds a user-configured threshold, GemFire evicts eligible entries from memory until 

heap usage falls back below the threshold. Every entry evicted from memory increases the 

chance of a cache miss, which can reduce cache performance. To maintain cache 

performance, GemFire tries to evict the entries that are the least likely to be used in the 

near future. LRU eviction selects entries to evict based on the assumption that the least 

recently used entries are the least likely to reappear in the near future. When the workload 

satisfies this assumption, evicting the least recently used entries minimizes the chance of a 

cache miss. GemFire’s heap LRU eviction algorithm relies on the JVM’s garbage collector 

to very quickly collect the memory used by evicted entries. Evicting an entry does not, all 

by itself, make the entry’s memory available for allocation. It merely makes the object and 

its memory “unreachable.” This unreachable memory becomes available for allocation 
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only when the garbage collector collects it. Heap usage remains high until the garbage 

collector collects the memory from evicted entries. 

ZGC Decides When to Collect Garbage 

ZGC Goals. ZGC works to ensure that any thread that requests memory can get it with 

minimal delay. If an application thread attempts to allocate more memory than is currently 

available, ZGC pauses that thread until a garbage collection completes. This pause is called 

an allocation stall. ZGC works very hard to avoid allocation stalls, and to do this with 

minimal impact on application performance. 

ZGC Decision Rules. Ten times per second, ZGC samples the application’s heap usage 

and memory allocation rate, then applies seven rules to decide whether to initiate garbage 

collection. One rule, the High Usage rule, checks whether heap usage is above ZGC’s 

target maximum heap usage or is close enough to the target to cause concern. Another, the 

Allocation Rate rule, predicts whether the application is likely to run out of available heap 

memory if ZGC does not intervene immediately. 

Tuning ZGC for Use with Heap LRU Eviction 

When tuned for this purpose, ZGC is well suited for use with heap LRU eviction. 

To tune ZGC well, you will need to know some key characteristics of your workload and 

the key tuning knobs at disposal. 

Workload heap usage. To tune ZGC well, you will need to know several key 

characteristics of your workload’s heap usage: 

● Long-lived heap usage: The amount of heap that GemFire requires in order to 

hold cached data in memory. This includes the memory used for the data’s keys 

and values, plus the data structures that GemFire uses to maintain the data, plus 

other long-lived data structures that GemFire uses in order to present its services. 

Long-lived heap usage does not include the short-lived objects that GemFire uses to 

perform a particular operation. 

● Live set size: The amount of heap used by all live objects. This includes long-lived 

objects and any short-lived objects currently in use. Over time, GemFire’sZHeap 

Collection Used Memory statistic gives an approximation of live set size. 

ZGC tuning knobs. Java offers two key JVM options to tune ZGC for use with heap LRU 

eviction: 

● Xmx: The JVM’s maximum heap size. For a given workload, a larger heap size 

reduces the chance of allocation stalls, and allows ZGC to work efficiently with 

fewer worker threads. 

● XX:Soft Max Heap Size: ZGC’s “soft” limit for maximum heap usage. ZGC will 

strive to keep heap usage below this limit, but may allow heap usage to exceed it 

when necessary. As I will show, setting SoftMaxHeapSize lower reduces the risk of 

eviction, but makes garbage collections more frequent and less CPU-efficient. 
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Setting it higher reduces ZGC’s CPU consumption, but increases the risk of 

eviction. 

GemFire tuning knobs. GemFire’s primary tuning knob for governing heap LRU eviction 

is: 

● Eviction-heap-percentage: GemFire’s target heap usage threshold, expressed as a 

percentage of max heap size. Whenever heap usage exceeds this threshold, 

GemFire evicts entries to bring heap usage down. 

Experimenting with SoftMaxHeapSize 

To understand how SoftMaxHeapSize affects heap usage, operation throughput, and 

garbage collection performance, I ran a series of scenarios on a GCP instance with 16 

CPUs. Each scenario: 

● Starts a GemFire server with max heap size (-Xmx) set to 32g and with GemFire’s 

eviction threshold set to 60%. 

● Pre-populates a set of heap LRU regions with enough total data to bring long-lived 

heap usage to about 40% of max heap size. The data consisted of 1,205,264 total 

entries, each holding a 10000 byte array. (Actual measured long-lived heap usage 

was 40.5%.) 

● Runs 16 threads to perform as many updates as possible for 2 minutes. Each update 

replaces a randomly selected value in the cache with a new value of the same size 

(a 10000 byte array). This sustained updates phase generates a great deal of garbage 

(about 2g per second) while keeping long-lived heap usage essentially 

constant.varied SoftMaxHeapSize from 40%, just below long-lived heap usage, to 

70%, well above the eviction threshold. 

Run these scenarios as experiments, not as benchmarks. Each scenario uses 16 client 

threads running in a separate JVM but on the same GCP instance as the GemFire server. 

Additionally, several other minor processes coordinate the experiments. We should not 

take the results as absolute measures of performance, but rather as general effects and 

trends. These scenarios generate an unusually uniform workload. In a production 

environment, the workload will be far more variable. 

Garbage production rate. In these scenarios, the sustained update phase allocates 

memory at a rate of about 2000 MB/s. Given the nature of the scenarios, every allocation 

results in corresponding garbage. Some allocations are for new values that will live in the 

cache but replace existing values, making the old values unreachable. The remaining 

allocations are for short-lived objects that will become unreachable as soon as they 

complete their role in the operation. This means that the measured allocation rate is the 

same as the garbage production rate. Every 16 seconds or so, each scenario generates a full 

heap worth of garbage (32 g). 

4. Performance Matrix 

Eviction headroom is the difference between the eviction threshold and the 

SoftMaxHeapSize. 

Eviction Headroom=Eviction Threshold−SoftMaxHeapSize 

SoftmaxHeapSize and Heap Usage 

Heap usage is managed by setting an appropriate SoftMaxHeapSize. The heap usage can 

be modeled as follows: 

https://gemfire.dev/blog/maximizing-gemfire-cache-performance-with-zgc-and-heap-lru-eviction/images/long-lived-40-allocation-rate.png


 ISSN: 2249-0558Impact Factor: 7.119  

 

55 International journal of Management, IT and Engineering 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

Heap Usage=Live Set Size+Garbage 

Where: 

Live Set Size is the memory used by all live objects. 

Garbage is the memory allocated by objects that will be collected by the garbage 

collector. 

Patterns of Heap Usage 

Insufficient Collection Headroom: If SoftMaxHeapSize is too low, ZGC will collect 

garbage continuously: 

Collection Headroom=SoftMaxHeapSize−Live Set Size 

If Collection Headroom is negative, ZGC will struggle to keep up with garbage collection. 

Insufficient Eviction Headroom: If SoftMaxHeapSize is above the eviction threshold: 

Eviction Headroom=Eviction Threshold−SoftMaxHeapSize 

If Eviction Headroom is negative, frequent evictions will occur, leading to cache misses. 

Sufficient Collection and Eviction Headroom: Both collection and eviction headroom 

should be positive: 

Collection Headroom>0 

Eviction Headroom>0 

Throughput Analysis: Throughput can be affected by the SoftMaxHeapSize. As 

SoftMaxHeapSize increases, throughput improves due to reduced garbage collection 

overhead. 

Throughput: 

Throughput=  
𝑇𝑜𝑡𝑎𝑙  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑖𝑚𝑒
 

CPU Availability: 

Available CPUs=Total CPUs−CPUs Used for GC 

SoftMax HeapSize Affects Heap Usage 

The Heap Usage graph shows the minimum and maximum heap usage during the sustained 

updates phase of each scenario, as measured by ZGC’s memory manager: 

 

Fig.2 Heap usage 

The colored zones highlight different patterns of performance. In the green zone, ZGC 

is able to keep heap usage below or near its target SoftMaxHeapSize, and the system is 

able to avoid eviction. Despite constantly collecting garbage and consuming every CPU 

cycle available to it, ZGC is unable to meet its SoftMaxHeapSize target in the orange zone. 

In the red zone, despite ZGC keeping heap usage below or near SoftMaxHeapSize, 
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GemFire evicts many entries from memory. Two key factors govern which performance 

pattern the system exhibits: 

● Collection headroom: The difference between SoftMaxHeapSize and the live-set 

size. 

● Eviction headroom: The difference between the eviction threshold 

and SoftMaxHeapSize. 

Even in the green zone, ZGC may need to perform many expensive garbage collections to 

keep heap usage at or below SoftMax HeapSize. Later, we will see that as SoftMax 

HeapSize increases from the left side of the green zone to the right, ZGC’s performance 

improves steadily, consuming fewer and fewer CPU cycles. 

Collection Headroom 

ZGC tries to keep heap usage below SoftMaxHeapSize. ZGC can meet this goal 

when it has enough collection headroom, as shown in the green and red zones on the graph. 

In the orange zone, collection headroom is too low. Given the rate of garbage production 

and the live objects maintaining the cache and performing operations, ZGC cannot collect 

garbage fast enough to keep heap usage below SoftMax HeapSize. The first scenario sets 

SoftMaxHeapSize to 40% of the maximum heap size. This is not only below the live-set 

size (approximated by the green line), but also below long-lived heap usage (40.5% of the 

maximum heap size). Having negative collection headroom clearly makes it impossible for 

ZGC to keep heap usage below SoftMaxHeapSize. Even in this impossible scenario, heap 

usage exceeded SoftMaxHeapSize by at most about 8% of the maximum heap size. 

Eviction Headroom 

GemFire’s heap LRU eviction algorithm tries to keep heap usage below the 

eviction threshold. To meet this goal, it will evict eligible entries from memory when 

necessary. To avoid evictions, the system needs eviction headroom. Each scenario 

generates garbage at a rapid rate, relentlessly pushing heap usage up. Given enough 

eviction headroom, as in the orange and green zones, ZGC responds to the upward pressure 

in plenty of time to avoid evictions. In the red zone, the eviction headroom is too low. As 

heap usage rises, it crosses the eviction threshold before it hits SoftMaxHeapSize. By the 

time the rising heap usage triggers a collection, GemFire has already evicted numerous 

entries. The number of entries evicted depends on how often heap usage rises above the 

eviction threshold and how long it stays there. With SoftMaxHeapSize set to 70% and the 

eviction threshold set to 60%, GemFire evicted nearly 600,000 entries (about half of the 

entries in the cache) in two minutes. 
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Fig. 3 Evicted rate 

Patterns of Heap Usage 

Once per second, GemFire samples many statistics, including ZHeap Current Used 

Memory (self-explanatory) and ZHeap Collection Used Memory, the amount of memory in 

use at the end of the most recent garbage collection cycle. ZHeap Collection Used Memory 

gives a reasonable approximation of live-set size, though it will also include any garbage 

that was generated during the most recent garbage collection cycle. Different 

SoftMaxHeapSize settings impact heap usage in relation to the eviction threshold and the 

live-set size. 

Insufficient Collection Headroom 

Here’s what heap usage looks like when ZGC is not given enough collection headroom: 
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Fig. 4 Heap current used memory status 

Current usage never strays far from collection usage. This is a sign of insufficient 

collection headroom. Because memory usage remains above SoftMaxHeapSize during the 

entire sustained updates phase, ZGC collects garbage continuously. 

Insufficient Eviction Headroom: The heap usage pattern is very different 

when SoftMaxHeapSize is set above the eviction threshold: 

 

fig.5 heap usage pattern is very different when SoftMax HeapSize is set above the eviction 

threshold 

In this scenario, ZHeap Current Used Memory shows frequent excursions above the 

eviction threshold. The result is that GemFire evicts entries from memory. As entries are 

evicted and collected, the live-set size decreases, as reflected in the declining ZHeap 

Collection Used Memory. As we will see, collections are far less frequent in this scenario 

compared to the “insufficient collection headroom” scenario described above. But the cost 

is that many entries are evicted, increasing the likelihood of cache misses. 

Sufficient Collection Headroom and Eviction Headroom-In this scenario, SoftMax 

HeapSize is set well below the eviction threshold and well above the live-set size: 
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Fig.6 eviction threshold and well above the live-set size 

This gives the system sufficient collection headroom below SoftMaxHeapSize and 

sufficient eviction headroom above. Tuned in this way, ZGC keeps heap usage well away 

from the eviction threshold, allowing the system to avoid eviction. And it is able to do this 

with relatively infrequent garbage collections. 

How SoftMaxHeapSize Affects Throughput: As SoftMaxHeapSize rises, application 

throughput rises (puts per second): 

 

Fig.7 throughout 

In each scenario, 16 client threads performed fixed-size puts as fast as possible for 

2 minutes. Note that though the client and server executed in separate JVMs, they both ran 

on the same GCP instance. For the instance's 16 CPUs, the client threads competed with 

the server's operation threads and ZGC threads. The throughput curve is slightly S-shaped, 

with a slightly higher slope in the middle of the graph than at either end. Setting 

SoftMaxHeapSize too low interferes with performance, resulting in slightly flatter 

throughput on the left side of the graph. On the right side of the graph, the slope decreases 
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slightly as collection CPU utilization asymptotically approaches 0. When ZGC has 

insufficient collection headroom, it collects garbage more often and assigns more threads 

to the garbage collection tasks. In the scenarios where collection headroom was lowest, 

ZGC kept 4 CPUs busy at nearly all times. This is the maximum number of CPUs that 

ZGC will assign by default on a 16-core host. 

  

 

Fig.8 CPU utilization 

If subtract the number of CPUs busy doing garbage collection from the total number of 

CPUs (16), we get the number of CPUs available for other tasks: 

 

fig.9 available CPU 

This graph has essentially the same shape as the throughput graph. The lesson is clear: To 

maximize throughput, give ZGC plenty of collection headroom. 
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How SoftMaxHeapSize Affects Garbage Collection Performance 

As collection headroom increases, the frequency of garbage collections drops: 

 

Fig.10 frequencies of garbage collections drops 

In the scenarios where collection headroom is too low, ZGC performs garbage collections 

at the rate of 2 per second. At the same time, the mean CPU consumption of each 

collection also drops, even as the garbage production rate rises: 

 

Fig.11 CPU collection time 

5. Conclusion 

Integrating VMware GemFire with Java 17's Z Garbage Collector (ZGC) and 

utilizing the heap LRU eviction strategy represents a transformative approach for 

optimizing fintech microservices. This combination addresses critical performance 

challenges by enhancing both caching efficiency and memory management. GemFire’s 
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distributed caching enables the storage of frequently accessed data in memory across 

multiple microservice instances, reducing access times and improving data retrieval speed. 

With its focus on minimizing garbage collection pause times, ZGC complements this by 

managing memory more effectively, ensuring smooth and uninterrupted service.  

When memory limits are approaching, the heap LRU eviction algorithm 

systematically removes the least recently used data from the cache, thereby maintaining 

high cache hit rates and reducing latency. Together, these technologies facilitate a highly 

scalable and responsive microservice architecture that can handle varying workloads with 

ease. This integration not only improves throughput and system reliability, but also reduces 

the load on databases by minimizing cache misses and optimizing data access patterns. As 

a result, fintech applications benefit from enhanced performance, better resource 

utilization, and improved user experiences, making this approach a compelling solution for 

modern financial systems that demand both high availability and rapid processing 

capabilities. By continuously monitoring and adjusting parameters based on real-time 

metrics, organizations can achieve a finely tuned infrastructure that meets the dynamic 

needs of today’s financial services landscape. 
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